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Abstract. All existing experimental results are currently interpreted using clas-
sical geometry. However, there are theoretical reasons to suspect that at a deeper
level, geometry emerges as an approximate macroscopic behavior of a quantum sys-
tem at the Planck scale. If directions in emergent quantum geometry do not commute,
new quantum-geometrical degrees of freedom can produce detectable macroscopic de-
viations from classicality: spatially coherent, transverse position indeterminacy be-
tween any pair of world lines, with a displacement amplitudemuch larger than the
Planck length. Positions of separate bodies are entangled with each other, and un-
dergo quantum-geometrical fluctuations that are not describable as metric fluctuations
or gravitational waves. These fluctuations can either be cleanly identified or ruled out
using interferometers. A Planck-precision test of the classical coherence of space-time
on a laboratory scale is now underway at Fermilab.

1. Introduction

Large-scale laser interferometers have been developed to study the dynamics of space-
time with unprecedented precision— fractional distortions of classical geometry of less
than a part in 1020, caused by gravitational waves from sources in the distant universe.
Here, I discuss the possibility that large interferometersmight measure an entirely dif-
ferent effect, caused by the quantum character of geometry itself, andoriginating within
the space-time of the apparatus.

At first glance this idea seems counterintuitive. New physics introduced at small
scales and high energies is usually probed by giant accelerators that collide particles at
TeV energies and create interactions in attometer volumes.Quantum effects on space-
time are usually thought to originate at the Planck scale, animpossibly high energy for
accelerators. Interferometers on the other hand appear completely classical; they mea-
sure the positions of macroscopic masses on macroscopic scales, and should seemingly
be insensitive to such small scale effects.

Yet interferometers are superb quantum measurement devices. They prepare and
measure positions in states whose quantum coherence extends over a macroscopic
volume of space and time (Schnabel et al. 2010; LIGO Scientific Collaboration 2011).
Their sensitivity currently approaches the Heisenberg quantum limit for their size and
mass. They are also close to a physically fundamental threshold of precision: a power
spectral density for position noise given by the Planck time, where deviations from clas-
sicality might be expected. In these respects, interferometers are uniquely well suited
to measure or quantitatively constrain tiny quantum deviations from classical features
of geometry, such as separation of large and small scales, the independence of positions
in different directions, and the principle of locality.
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2. Quantum geometry

It is hard not to take the classicality of macroscopic geometry for granted. The idea of
a position in space is the first physics we all learn as small children, before we even
think of space as part of physics. But from the perspective ofquantum physics, the
large scale classical coherence of space is a deep mystery.

The standard operational theory of the physical world is assembled from two dis-
tinct pieces. The first is geometry: a classical, dynamical space-time, that is the stage
for everything else. The second includes all the forms of quantum matter and energy
that move and transform in time and space as particles and fields. The two pieces are
spliced together in a way that is itself classical, and self-consistent on large scales:
the quantum character of the stuff in the energy-momentum tensor is ignored for grav-
itational purposes, and quantum particles and fields move about within a classically
determinate space-time.

This way of joining of the quantum world with geometry works well to explain
every experimental result in physics. On the other hand, just because a theory is consis-
tent and successful in a certain range of applications does not mean that it is complete,
or correct in all circumstances. Indeed, there are good theoretical reasons to suspect
that at a deeper level, geometry has a quantum character:

• The expansion of the universe is observed to be accelerating. This behavior is
controlled by the gravitation of the vacuum, which is simplyan arbitrarily chosen
constant in standard theory. Its explanation lies outside the standard paradigm of
fields propagating in classical space-time (Weinberg 1989;Cohen et al. 1999;
Frieman et al. 2008).

• Thought experiments that include curved space-times, suchas black holes, show
that the dynamics of gravity and space-time can be interpreted as a statistical
behavior, like thermodynamics (Jacobson 1995; Padmanabhan 2010; Verlinde
2011). That is, the equations of Newton and Einstein can be derived on the basis
of statistical principles from the behavior of new, as yet unknown quantum de-
grees of freedom. The number of fundamental degrees of freedom appears to be
holographic (Bousso 2002): information about the state of acausally connected
space-time volume can be encoded with Planck information density on its two-
dimensional boundary. This nonlocality and limited information content cannot
be reconciled in a fundamental theory with only classical geometry and quantum
fields. Similarly, thought experiments that include black holes and fields show
effects like Hawking evaporation— essentially, a conversion of geometry into
particles. For quantum principles to hold, the geometry must have holographic
quantum degrees of freedom.

• The fundamental mathematical structures of quantum mechanics and classical
geometry are entirely different, and their splicing is not controlled by any well de-
fined mathematical limiting procedure (Wigner 1957; Salecker & Wigner 1958).
In quantum mechanics, a position is a property of an interaction, and is described
by an operator; in classical geometry, a position is a property of an event, and
is described by a real vector. There is no physical way to compare positions of
classically-defined events. The standard way of splicing these two different math-
ematical concepts together is self-consistent at low energies, but since it assumes
classical behavior, it excludes quantum-geometrical effectsa priori.
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• Similarly, the geometrical concept of spatial localization, at the heart of classical
geometry, is not a property of reality. Quantum physics is not consistent with
“local realism”, as now demonstrated by many real-world experiments (Ma et al.
2012; Zurek 2003). Although no experiment has yet directly revealed a quantum
property of geometry itself, we also do not know how to reconcile experiments
with the idea that classical geometry can be “real”, since itcan only be measured
with quantum processes that fundamentally do not happen in adefinite time or
place. Quantum mechanical nonlocality is sometimes described as paradoxical,
but from the point of view of quantum mechanics, the apparentclassical coher-
ence of space at large separation may be the deeper mystery.

• Beyond the Planck scale, a dynamical classical geometry is no longer consis-
tent with quantum mechanical matter. A quantum particle confined to a sub-
Planckian volume in three dimensions has a mass exceeding that of a black hole
in that volume, impossible according to relativity; conversely, a black hole with
mass below the Planck scale has a quantum position indeterminacy larger than
its Schwarzschild radius, so the geometry must be indeterminate.

Many promising ideas for unifying classical and quantum descriptions have been
pursued over the last century. Decades of mathematical literature document consistent
progress in quantum theories that include gravity, such as string theory, matrix theory,
loop quantum gravity, and noncommutative geometry. They allow a consistent descrip-
tion of physics at the Planck scale and beyond (Hossenfelder2012). They also display
explicit holographic dualities in curved space-times; forexample, a conformal quan-
tum field theory on the boundary of an Anti-De Sitter space also describes a quantum
theory of matter and gravity in the higher-dimensional bulk. On the other hand, no mi-
croscopic quantum theory yet gives a clear account of the emergence of a macroscopic,
nearly-classical, nearly-flat spacetime— that is, a realistic laboratory setting— so the
connection of these ideas with classical geometry has not been tested experimentally.

The approach taken here does not derive from gravity or quantized fields, or from
any particular fundamental microscopic theory. Instead weuse general principles of
special relativity and quantum mechanics to directly estimate possible new macroscopic
effects of Planckian quantum geometry, if positions in different directions do not com-
mute. These arguments suggest that interferometers may detect effects of quantum
geometry on the positions of massive bodies.

3. Emergent Space-time

One promising, general approach to quantum geometry is to suppose that classical
space-time is “emergent”. The general idea is that classical notions of spatial direc-
tion, position, and locality may arise only as approximations, in a macroscopic limit.
On small length scales, the system becomes less classical and “more quantum”. At the
Planck scale, geometrical states become fully indeterminate quantum systems.

To make this idea work in practice, the classical limit should reconcile standard
physics with hints of quantum geometry just identified, suchas the holographic behav-
ior of gravitational states. Macroscopic symmetries of space and time, such as Lorentz
invariance, should be derived rather than assumed. Ideally, some new predictions for
realistic experiments might also emerge, that could confirmthat these ideas have some-
thing to do with the real world.
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According to one idea (Banks 2011), the Hilbert space of a space-time, together
with all the matter in it, is defined in relation to a particular timelike world line. In the
emerged space-time, an interval on the world line defines a causal diamond— a region
in the intersection of the future light cone of the initial point, and the past light cone
of the final point. The state associated with an interval thatlasts forN Planck times is
represented by anN × N matrix that represents everything happening within a causal
diamond.

This construction is holographic: the number of degrees of freedom is the area of
the covariantly-defined 2D bounding surface in Planck units. By construction, it is con-
sistent with causality and general covariance. Since it is built around a particular world
line, it is not manifestly consistent with full Poincare invariance; whether or not this
is a problem, is a quantitative issue to be settled by experiment. It has been suggested
that physics based on an emergent space-time could provide anatural setting to explain
both inflation and cosmic acceleration (Padmanabhan 2012; Banks & Fischler 2011).

Emergent space-time is a useful framework to discuss new effects of quantum
geometry on the positions of bodies in nearly flat space. It allows us to contemplate
new violations of classicality, such as position operatorsin different directions that do
not commute with each other. Although quantum geometry originates in Planck scale
physics, in an emergent space-time its effects need not be confined to Planck scale fre-
quencies or scales; it can be spatially nonlocal, shared coherently by many particles;
and it can produce distinctive, observable, entangled fluctuations of macroscopic posi-
tions.

4. Noncommuting macroscopic quantum geometrical positionoperators

A position is described by an operator, that operates on a state describing a system.
Position operators are not unique, but can represent various ways of preparing and
measuring a quantum state. Some operators correspond to conventional position opera-
tors; for example, the position operator for a particle operates on a subset of the system,
corresponding to that particle, and correlates it with another subsystem representing a
measurement apparatus. Indeed it is common practice to approximate systems of in-
terest as idealized isolated subsystems, and ignore other degrees of freedom. Such a
subsystem is conventionally idealized as an isolated stateor prepared system, but it is
really part of a larger state that includes that of the geometry it inhabits.

A similar procedure can be followed for new quantum-geometric modes. We can
ignoreall the standard quantum degrees of freedom, and write down a quantum theory
of operators that represent only new collective geometrical position degrees of freedom
in an emergent system, that are shared by many particles. This program is less ambi-
tious than most approaches to Planckian physics, since it does not attempt to formulate
a fundamental, microscopic theory. The main constraint is that the overall behavior
agrees sufficiently well with classical space-time position to agree with experiments.

Consider the mean position of some massive collection of particles in a compact
region of space, which we call a “body”. Suppose that the position of a body in each
direction µ is a quantum observable, represented by a self-adjoint operator xµ. The
commutators of these operators represent the quantum deviations of a massive body
from a classical trajectory. The body itself is assumed to bemassive enough that we
ignore the conventional position operators— the usual quantum effects associated with
its motion.
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To describe the quantum degrees of freedom of the geometry, posit the following
commutators relating positions in different directions (Hogan 2012a):

[xµ, xν] = x̄κŪλǫµνκλiℓP, (1)

where indicesµ, ν, κ, λ run from 0 to 3 with the usual summation convention, ¯xκ denotes
the expectation value of the position,̄Uλ ≡ ∂x̄λ/c∂τ the dimensionless expected 4-
velocity of the body,τ the proper time,ǫµνλκ the Levi-Civita antisymmetric 4-tensor,
andℓP a parameter with the dimensions of length.

In the limit ℓP → 0, the commutator vanishes, so that positions in different
spatial directions behave independently and classically.It is interesting to ask what
happens if the scaleℓP is not zero, in particular if it is of order the Planck length,
ℓP ≈ ctP ≡

√

~G/c3 = 1.616× 10−35 meters. With this choice the number of the ge-
ometrical degrees of freedom approximately agrees with holographic entropy bounds
for gravitating systems.

One virtue of equation (1) is that it is manifestly covariant: the two sides transform
in the same way under the homogeneous Lorentz group, as a direct product of vectors.
The algebra of the quantum position operators respects the transformation properties of
corresponding coordinates in an emergent classical Minkowski space-time, in a limit
where the operators are interpreted as the usual space-timecoordinates. The theory
itself thus defines no preferred direction in space. These operators are thus plausible
candidates for classical positions in the macroscopic limit.

Indeed the form of departures of positions from classical behavior— the commutator—
depends on classical position and 4-velocity in a way that isdetermined by the need
for covariance. The quantum commutator of two vectors requires two antisymmetric
indices that must be matched by indices on the right side. Thus we require a nonvan-
ishing antisymmetric tensor, which in four dimensions has four indices,ǫµνλκ. Two of
its antisymmetric indices match those of the noncommuting positions. The other two
must contract with two different vectors to avoid vanishing. The unique geometrically
defined options are the 4-velocity and position of the body being measured.

On the other hand, Eq. (1) is notinvariant. The commutator does depend on the
position and 4-velocity of the body being measured, or equivalently, on the origin and
rest frame of the coordinate system. We interpret this to mean that the commutator
describes a quantum relationship between world lines that depends on their relative
positions and velocities, but not on any other properties ofthe bodies being compared.
In Eq. (1), the quantum-geometrical position state of a bodyis defined in relation to a
particular world line, the origin of the coordinates.

These attributes are expected if quantum geometry describes a relationship be-
tween timelike trajectories. Unlike a classical metric defined independently of any
observer, the state of a quantum geometry is shaped by a choice of world-line, so as
noted above, it cannot obey Poincare invariance. The reference world line is defined in
this instance by the coordinate system.

In the rest frame of the body being measured, the 4-velocity is Ūλ = (1, 0, 0, 0)
so the non-vanishing terms of Eq. (1) are those multiplied byǫµνκλ with λ = 0. The
remaining terms describe a noncommutative geometry in three dimensions:

[xi , x j] = x̄kǫi jk iℓP, (2)

where indicesi, j, k now run from 1 to 3, and the operatorsxi correspond to positions at
a single time, in the rest frame of the body. Eq. (2) describesa quantum-geometrical re-
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lationship between positions of two trajectories (or massive bodies) that have expected
proper 3-separation ¯xk, and whose world-lines have the same expected 4-velocity.

5. Quantum geometrical position uncertainty

As usual in quantum mechanics, the operators represent observables, and they operate
on states that represent physical systems. In this case, thequantum system describes
the geometry that relates the trajectories, which is usually assumed to be classical. Also
as usual, if we think of the position state as represented by awave function, rather than
a matrix, we can estimate the quantum indeterminacy in position. The wave function
in this case is not invariant, but depends on the positions and velocities of the trajecto-
ries whose relationship it describes. In particular, the complementarity of position in
different directions depends on the separation vector. It depends only on the mean po-
sition and velocity, consistent with describing a collective degree of freedom of many
particles, that is, a massive body or bodies.

The quantum commutator leads to an uncertainty relation in the usual way, al-
though the conjugate variables are now positions in different directions, instead of fa-
miliar examples such as position and momentum. In the rest frame, the uncertainty
relations for a body at position ¯xk are

∆xi∆x j ≥ |x̄
kǫi jk |ℓP/2, (3)

where∆xi = 〈|xi − x̄i |
2〉1/2 represents the spread of the wave function in each direction,

and〈〉 denotes an average over the wave function.
Remarkably, the wave functions of position in the directions transverse to sep-

aration x̄k between trajectories show a quantum-geometrical uncertainty that actually
increases with|x̄|. For trajectories with macroscopic separation, this new uncertainty is
much larger than a Planck length.

One consequence is that the notion of spatial locality emerges self-consistently,
over durations much longer than a Planck time. The quantum-geometrical uncertainty
within a small region of space-time scales like the durationτ′ of a causal sub-diamond,
∆xi∆x j ≈ cτ′ℓP. Everything in that region coherently shares a larger quantum-geometrical
deviation from classical position, relative to a distant world line with τ >> τ′.

Classical space-time emerges as an excellent approximation to describe positions
and trajectories with separations much larger than the Planck length. Consider the
angular uncertainty, from Eq. (3), in direction to a body on the 3-axis, with an expected
position (0, 0, x̄3):

∆θ1∆θ2 ≥ ℓP/2|x̄3|, (4)

where∆θ1 = ∆x1/|x̄3| and∆θ2 = ∆x2/|x̄3|. For separations on any experimentally
accessible scale, this deviation from classicality is fractionally negligible. However,
as separations approach the Planck scale, directions become mostly indeterminate. The
classical approximation breaks down, consistent with the idea of a space-time emerging
from a Planckian quantum system.

The transverse position uncertainty can be related to holography by counting de-
grees of freedom. The number of independent positions in theradial direction is the
diamond duration,cτ/ℓP ≈ |x̄|/ℓP ≈ N. The number of independent transverse states in
both transverse directions is about|x̄|2/∆xi∆x j ≈ |x̄|/ℓP ≈ N, so the product in all three
directions is≈ N2, as required for position states that give rise to holographic gravity.
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6. Measurements, fluctuations, and classicality

Uncertainty (as in Eq. 3) refers to the width of a wave function, but of course this func-
tion is not measured. It has a width at a particular time in therest frame, but in a time
series measurement, the uncertainty manifests as fluctuations or noise. The material
in each patch normal to a separation vector from the reference world line appears to
undergo a coherent transverse random walk of about a Planck length per Planck time
relative to the immediately interior patch. Because the effect is transverse, it cannot
be detected by measurements between just two world lines butrequires at least three
world lines, and a spatially extended measurement in two directions. As discussed
below, these requirements can be met in a suitably configuredinterferometer.

These quantum-geometrical fluctuations have no direct relation to vacuum fluctu-
ations of Planck-scale modes of quantum fields, or of the metric. They are due to a
quantum indeterminacy in the spatial relationships of timelike trajectories of large ag-
gregations of particles, rather than a zero point oscillation of a field mode. The new
degrees of freedom that originate in the noncommutative geometry have normal modes
that are not plane waves. They combine wildly different longitudinal and transverse
scales.

In a typical laboratory experiment, on the scale of a few meters, N is the of the
order of 1036. The equivalent speed of the spatially-coherent transverse geometrical
fluctuation is aboutN−1/2c, or about one centimeter per year— a tiny speed generally
associated with long, slow processes, such as motions of theearth’s crust. Here however
the coherence timeτ for the fluctuations is the light travel time across a laboratory,
typically tens of nanoseconds, and the total (transverse) excursion on that timescale is
of the order of ten attometers. Averaged over longer durations, the fluctuations around
classical positions are even smaller. This tiny departure from classicality would have
escaped detection up to now.

Recall that the entire state of a causal diamond of durationτ = NtP is represented
by anN×N matrix. Typically, states corresponding to particles are of the order ofN1/2×

N1/2 in size, withN total degrees of freedom. That is far less than the≈ N3 degrees
of freedom in a field theory in the same volume with a Planckiancutoff. Physically,
the reason for the reduction is that quantum geometry entangles field modes in different
directions: they are no longer independent.

On the other hand , even the space-time within a single elementary-particle col-
lision in a collider such as the Tevatron or the LHC, on the TeVscale, comprises
N ≈ (mPc2/TeV) ≈ 1016. This number is still so large that quantum-geometrical effects
on the phase space of particle interactions would have escaped notice at the attainable
levels of experimental precision in colliders. For this purpose, even an attometer is
macroscopic compared with the Planck scale.

If the massm of a body is less than the Planck mass,m< mP ≡ ~/c2tP = 2.176×
10−5 g, the standard Heisenberg uncertainty (Caves 1980) for thevariance in a body’s
position difference measured at two times separated by a durationτ,

∆x2 ≡ 〈(x(t) − x(t + τ))2〉 ≥ 2~τ/m, (5)

is greater than the quantum-geometrical position uncertainty at separationcτ. Quantum-
geometrical uncertainty is therefore negligible on the mass scale of elementary particles
(≈ TeV ≈ 10−16mPc2), which helps to explain why classical space-time is such a good
approximation for systems involving small numbers of particles, and why standard the-
ory agrees so well with precision tests in microscopic experiments.
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Quantum-geometrical position entanglement thus only becomes significant, com-
pared to standard quantum mechanics, in large aggregationsof particles. Of course, the
effect is not generally noticed since correlations, and much larger displacements, arise
from all the usual interactions between particles in a typical massive body. However,
in a special, carefully prepared system such as an interferometer, these tiny, purely ge-
ometrical position displacements of free massive bodies can be decoupled from other
environmental factors, and measured.

7. Response of interferometers to quantum-geometrical uncertainty

The positional quantum states of bodies in quantum geometrypossess a kind of nonlo-
cal coherence not describable by states of standard quantumtheory in classical space-
time. In the standard view, the position of a massive body is an average over many par-
ticles; the macroscopic, very low frequency components of particle motion are highly
correlated, and reduce to only the three classical positional degrees of freedom for the
body as a whole. Here, an additional coherent entanglement of geometrical position
states creates a new correlation in the mean positions of otherwise separate bodies— an
in-common, coherent quantum-geometrical deviation from their classical trajectories.

In a Michelson interferometer, the normal modes of photon fields are shaped by the
boundary conditions, particularly the beam splitter, intocombinations of plane waves
in two directions (Caves 1981). The signal at the dark port ofthe interferometer corre-
sponds to a position-difference operator that coherently entangles the position states of
three massive bodies in two directions, separated by the armlength. In a quantum ge-
ometry, positions in the two directions are not independent, and quantum-geometrical
position entanglement on this scale affects the signal.

For a simple Michelson interferometer, the response of a signal to quantum-geometrical
uncertainty resembles a Planckian random walk of the beamsplitter position up to dura-
tions given by twice the arm length,τ = 2L/c. A more precise estimate of the predicted
displacement power spectrum is (Hogan 2012b)

Ξ̃( f ) =
4c2tP
π(2π f )2

[1 − cos(f / fc)], fc ≡ c/4πL. (6)

This quantity gives the mean square displacement in measured arm length difference,
per frequency interval.

The spectrum at frequencies abovefc oscillates with a decreasing envelope that
scales likeΞ̃( f ) ∝ f −2. At frequencies much higher thanfc, the mean square fluctuation
in a frequency band∆ f goes likeΞ̃( f )∆ f ∝ (∆ f / f )(c2tP/ f ). This result is independent
of L, as it must be since it results from a universal noise that depends only on the Planck
time, and shows increasing total variance in position at lowfrequency, as reflected
in the uncertainty relation (Eq. 3). The apparatus size actsas a cutoff: quantum-
geometrical fluctuations from long duration modes (cτ > 2L) do not add noise to the
signal, so that the noise spectrum at frequencies belowfc approaches a constant. In
addition, the mean square displacement averaged over a timeτ much longer than 2L/c
is ≈ (4ctPL/π)(2L/cτ), showing that the effect in a given spatial volume decreases
in a time averaged experiment; again, over long durations, everything acts more like
a classical system. Since the frequency spectrum of the displacement flattens off at
frequencies below the inverse system size, detection of thefluctuations is optimized
with a time resolution comparable to the system size.
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If two interferometers are near each other— that is, if they probe mostly the same
space-time volume— their geometrical position states are entangled, even if they have
no physical connection apart from proximity. By correlating their signals, one can mea-
sure the entanglement of geometrical position states. Depending on the configuration
of two interferometers, the cross-correlated signal is a measure of both the amplitude
of the geometrical fluctuations, and of their entanglement.

The predicted noise spectrum includes no parameters apart from known scales:
the size of the apparatus, and the Planck time. It includes distinctive features such as
zeros that signify its origin in the relative positions of the optical elements. The spectral
shape, its amplitude, and its spatial correlation are all measurable quantities. The theory
thus offers a clean target for experimental test.

8. Real Interferometers

If quantum-geometrical noise exists, it contributes to noise in gravitational wave de-
tectors. However, its effects are different from gravitational waves, so the response
depends on details of the interferometer optical layout.

At LISA frequencies, in the millihertz band, quantum-geometrical noise will be
hidden beneath a confusion-limited background from many sources of gravitational
waves. Future detectors (like the Big Bang Observer) that resolve the confusion back-
ground from binaries in the 0.1 to 1 Hz band will be affected by quantum-geometrical
noise, if it exists.

The most sensitive operating detector in the band from 0.1 to1 kilohertz, LIGO,
is not much affected by quantum-geometrical noise, because its optical design is rela-
tively insensitive to transverse displacements: most of the response of its signal to grav-
itational waves is generated in arm cavities. At frequencies in its detection band, which
are far below the inverse light-travel time, its sensitivity is dominated by longitudinal
displacements that are free of quantum-geometrical noise.GEO600 is the currently
operating detector most sensitive to the new effect, and indeed already operates close
to the predicted Planckian noise level (the low frequency limit of Eq. 6). However, it
is not configured to isolate the particular signatures of quantum-geometrical noise that
distinguish it from other noise sources, so it is not optimized to make a definitive test.

The Fermilab Holometer is an experiment designed specifically to detect the Planck-
ian quantum-geometrical noise, if it exists, and to rule it out, if it does not. The basic
layout is a pair of 40-meter Michelson interferometers in close proximity. Correspond-
ing optical elements of the two machines are within a meter ortwo of each other, so
their signals probe almost the same instantaneous space-time volume; their causal dia-
monds mostly overlap. Position fluctuations are measured athigh frequency, up to tens
of MHz, to resolve the predicted transfer function (Eq. 6). High frequency operation
also allows a simpler design than gravitational wave detectors; in particular, mechanical
isolation from the environment is much simpler.

Theory predicts that the correlated signal should reveal a new source of continuum
noise with a spectrum close to Eq. (6), with a critical frequency fc = 6× 105 Hz and a
first zero atf = c/80m= 3.75 MHz. The cross-correlation offers several advantages:
integration over time reduces the relative importance of other noise sources, such as the
dominant photon shot noise; alternative configurations allow response to the quantum
geometry fluctuations to be “turned off”; and specific diagnostics can be investigated in
the time domain, such as vanishing correlation beyond a lagτ = 2L/c.



10 Craig Hogan

If quantum-geometrical noise can be measured, its properties will convey detailed
information about the relationship between classical and quantum geometry, and the
statistical interpretation of gravity. If the predicted Planck-amplitude noise does not
exist, then it might be said that we have merely ruled out a particular interpretation of
emergent space-time. However, the result will stand as a solid constraint on the nearly-
classical coherence of space-time with Planckian sensitivity, that must be obeyed by any
future theory that seeks to explain the origin of classical geometry from first principles.
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